

Child and adolescent mental health investigations using CRIS

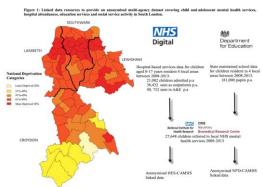
Dr Johnny Downs

Peggy Pollak Fellow in Developmental Psychiatry
Honorary Consultant Child and Adolescent Psychiatrist

CRIS: improving care through....

Making better use of existing information

Data-linkage and natural language processing approaches in NHS and school records to understand vulnerability within the clinical and general populations.


Improving the quality of clinical information

Embedding automated monitoring systems within electronic health care records to track family reports of progress over time.

Supporting decisions

Monitoring of symptoms and side-effects using online portals and wearable devices to track the course of medication treatment in ADHD.

1) Tracking use of off-label medication

Eur Child Adolesc Psychiatry (2016) 25:649–658 DOI 10.1007/s00787-015-0780-7

ORIGINAL CONTRIBUTION

Clinical predictors of antipsychotic use in children and adolescents with autism spectrum disorders: a historical open cohort study using electronic health records

Johnny Downs¹ · Matthew Hotopf¹ · Tamsin Ford^{1,3} · Emily Simonoff¹ · Richard G. Jackson^{1,2} · Hitesh Shetty² · Robert Stewart^{1,2} · Richard D. Haves¹

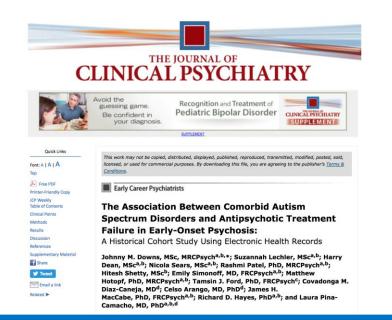
2) Surveillance of suicidality in ASD

AMIA Annual Symposium Proceedings Archive

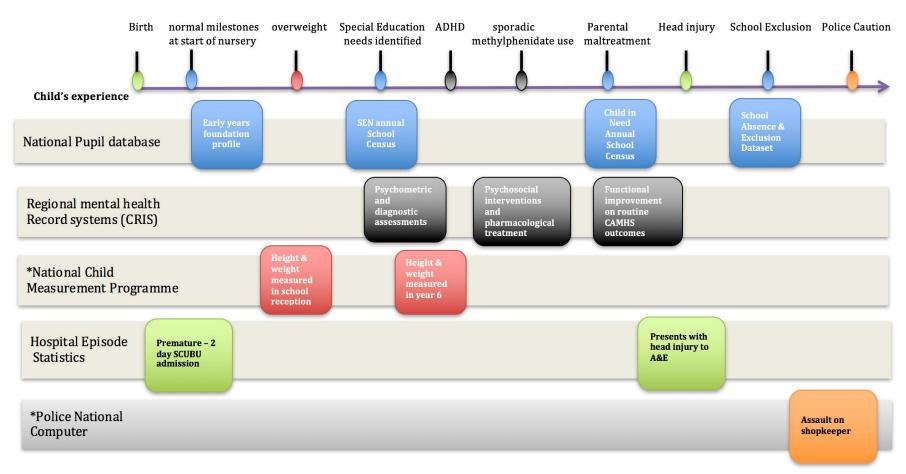
AMIA Annu Symp Proc. 2017; 2017: 641–649. Published online 2018 Apr 16. PMCID: PMC5977628 PMID: 29854129

Detection of Suicidality in Adolescents with Autism Spectrum Disorders: Developing a Natural Language Processing Approach for Use in Electronic Health Records

Johnny Downs, MRCPsych, *1,2 Sumithra Velupillai, PhD, *1,3 Gkotsis George, PhD, *1 Rachel Holden, MSc, 1,4 Maxim Kikoler, MSc, 1,4 Harry Dean, MSc, 1 Andrea Fernandes, MSc, 1 and Rina Dutta, PhD, FRCPsych 1,2

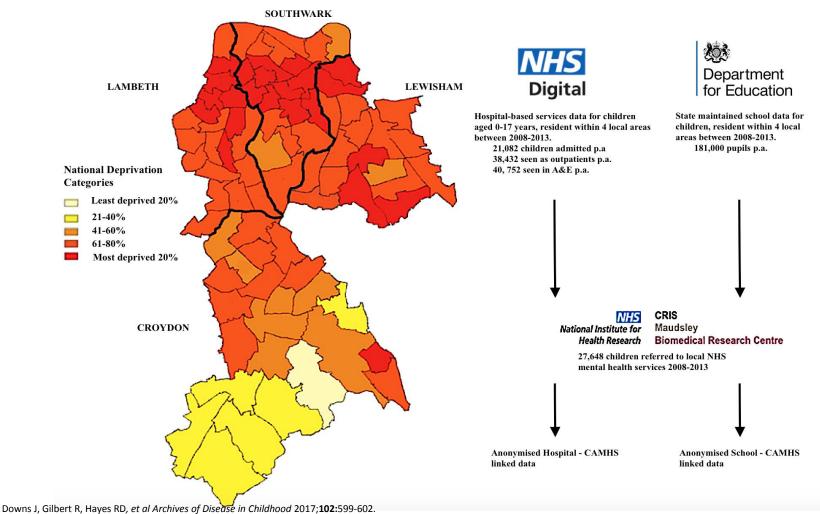

3) Understanding what factors predict treatment failure in young people with psychosis

Schizophrenia Bulletin doi:10.1093/schbul/sbx197


Negative Symptoms in Early-Onset Psychosis and Their Association With Antipsychotic Treatment Failure

Johnny Downs¹⁻³, Harry Dean¹, Suzannah Lechler¹, Nicola Sears¹, Rashmi Patel^{2,4}, Hitesh Shetty², Matthew Hotopf^{1,2}, Tamsin Ford⁵, Marinos Kyriakopoulos^{2,3,6}, Covadonga M. Diaz-Caneja⁷, Celso Arango⁷, James H. MacCabe^{2,4}, Richard D. Hayes¹, and Laura Pina-Camacho*, 3,7

Examples of routinely collected electronic child and young person data in England

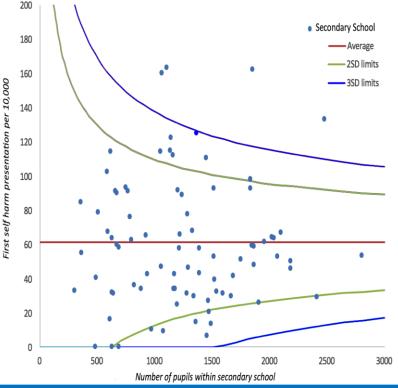

Ford T, Stewart R, Downs J Practical Psychiatric Epidemiology (in press) OUP

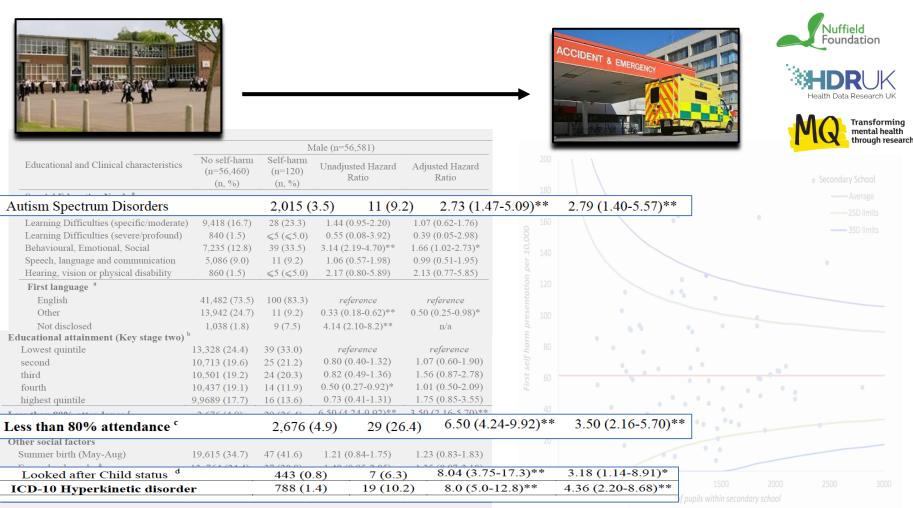
Downs J, Ford T, Shetty H, et al. BMJ Open 2018 (in press)

National Institute for Health Research

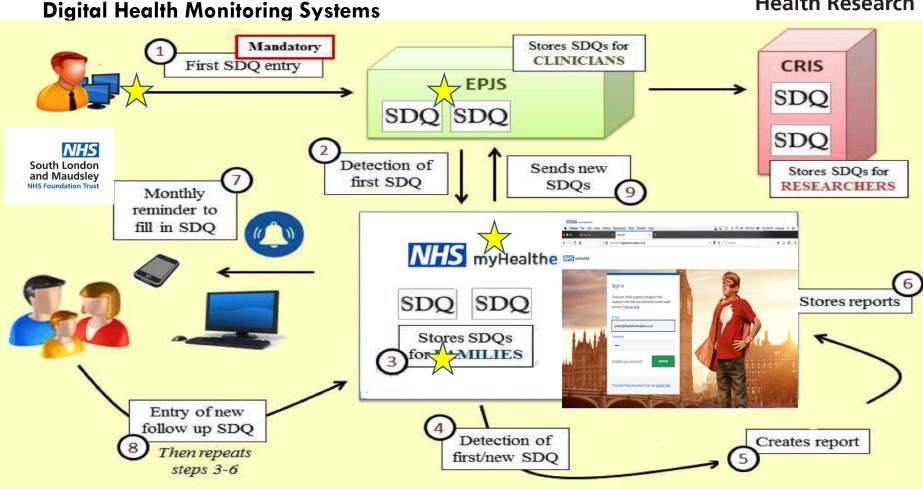
Linking health and education data to plan and evaluate services for children

National Institute for Health Research


Educational and clinical risk factors for self-harm in adolescence


	Male (n=56,581)			
Educational and Clinical characteristics	No self-harm (n=56,460)	Self-harm (n=120)	Unadjusted Hazard Ratio	Adjusted Hazard Ratio
	(n, %)	(n, %)		
Special Education Needs ^a				
Autism Spectrum Disorders	2,015 (3.5)	11 (9.2)	2.73 (1.47-5.09)**	2.79 (1.40-5.57)**
Learning Difficulties (specific/moderate)	9,418 (16.7)	28 (23.3)	1.44 (0.95-2.20)	1.07 (0.62-1.76)
Learning Difficulties (severe/profound)	840 (1.5)	≤ 5 (≤ 5.0)	0.55 (0.08-3.92)	0.39 (0.05-2.98)
Behavioural, Emotional, Social	7,235 (12.8)	39 (33.5)	3.14 (2.19-4.70)**	1.66 (1.02-2.73)*
Speech, language and communication	5,086 (9.0)	11 (9.2)	1.06 (0.57-1.98)	0.99 (0.51-1.95)
Hearing, vision or physical disability	860 (1.5)	≤ 5 (≤ 5.0)	2.17 (0.80-5.89)	2.13 (0.77-5.85)
First language a				;
English	41,482 (73.5)	100 (83.3)	reference	reference
Other	13,942 (24.7)	11 (9.2)	0.33 (0.18-0.62)**	0.50 (0.25-0.98)*
Not disclosed	1,038 (1.8)	9 (7.5)	4.14 (2.10-8.2)**	n/a
Educational attainment (Key stage two) ^b				
Lowest quintile	13,328 (24.4)	39 (33.0)	reference	reference
second	10,713 (19.6)	25 (21.2)	0.80 (0.40-1.32)	1.07 (0.60-1.90)
third	10,501 (19.2)	24 (20.3)	0.82 (0.49-1.36)	1.56 (0.87-2.78)
fourth	10,437 (19.1)	14 (11.9)	0.50 (0.27-0.92)*	1.01 (0.50-2.09)
highest quintile	9,9689 (17.7)	16 (13.6)	0.73 (0.41-1.31)	1.75 (0.85-3.55)
Less than 80% attendance ^c	2,676 (4.9)	29 (26.4)	6.50 (4.24-9.92)**	3.50 (2.16-5.70)**
Fixed term exclusions ^a	6,054 (10.7)	32 (26.7)	2.88 (1.92-4.31)**	1.30 (0.78-2.15)
Other social factors				
Summer birth (May-Aug)	19,615 (34.7)	47 (41.6)	1.21 (0.84-1.75)	1.23 (0.83-1.83)
Free school meals a	13, 764 (24.4)	37 (30.8)	1.40 (0.95-2.05)	1.35 (0.87-2.10)
Looked after Child status d	443 (0.8)	7 (6.3)	8.04 (3.75-17.3)**	3.18 (1.14-8.91)*
ICD-10 Hyperkinetic disorder	788 (1.4)	19 (10.2)	8.0 (5.0-12.8)**	4.36 (2.20-8.68)**

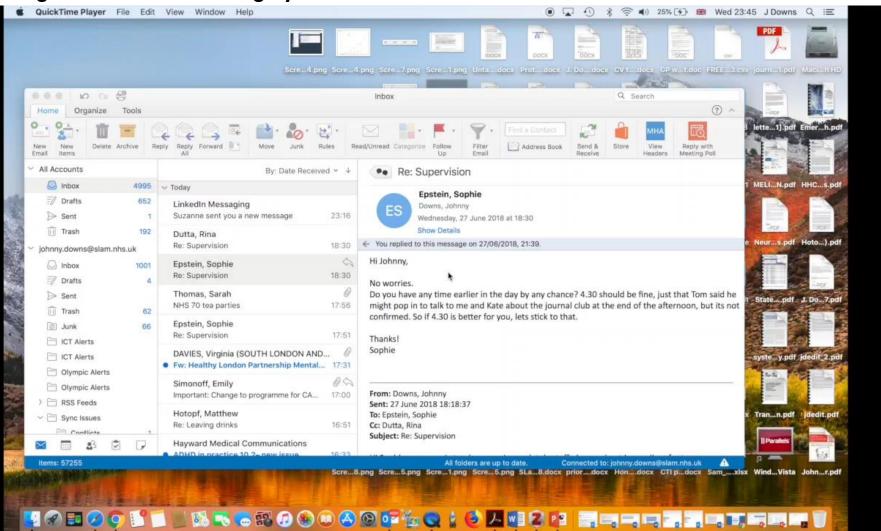
National Institute for Health Research


Educational and clinical risk factors for self-harm in adolescence

Improving the quality of clinical information..

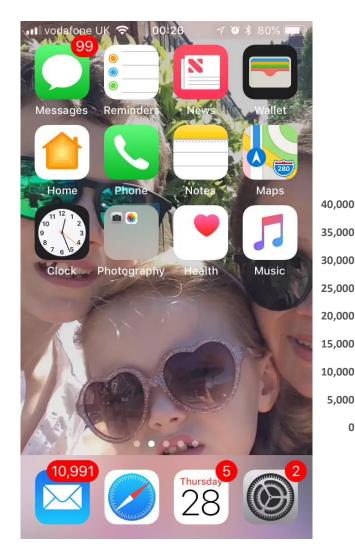
National Institute for Health Research

Reminder

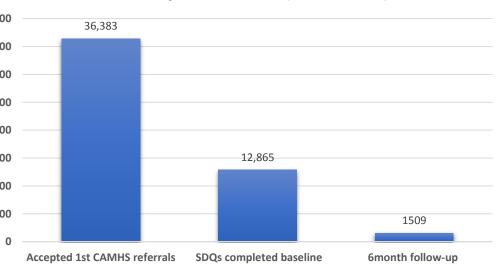

EPJS: Electronic Patient Journey System; CRIS: Clinical Record Interactive Search (anonymised)

Improving the quality of clinical information..

National Institute for Health Research


Digital Health Monitoring Systems

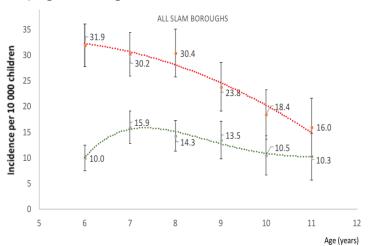
Improving the quality of clinical information..

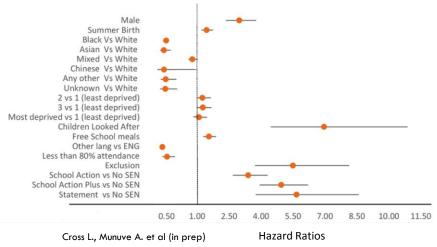

National Institute for Health Research

Digital Health Monitoring Systems

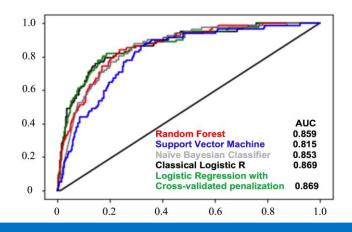
SDQ completion rates (2008-2017)

Morris A., Macdonald A. et al (in prep)


Supporting decisions for assessment, diagnosis and treatment..


National Institute for Health Research

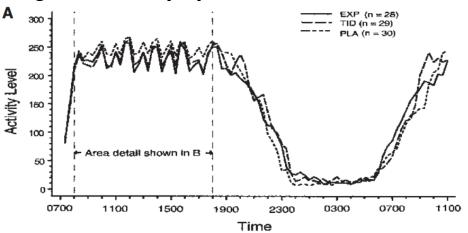
Improving detection, symptom and adverse effect monitoring in ADHD

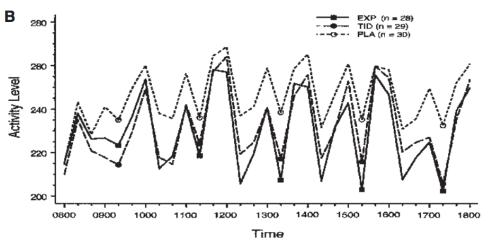

1) Age and diagnosis incidence, and medication use for ADHD

2) Population-level risk factors for ADHD

3) Prediction models for ADHD using education census data

Ter-Minassian L., Cross L. et al (in prep)


- Current measures in ADHD symptom monitoring are too subjective
- Clinical contact greater at assessment, but very little orientated towards regular monitoring post treatment.
- No systematic method of detecting need for treatment alterations.



Supporting decisions for assessment, diagnosis and treatment...

National Institute for Health Research

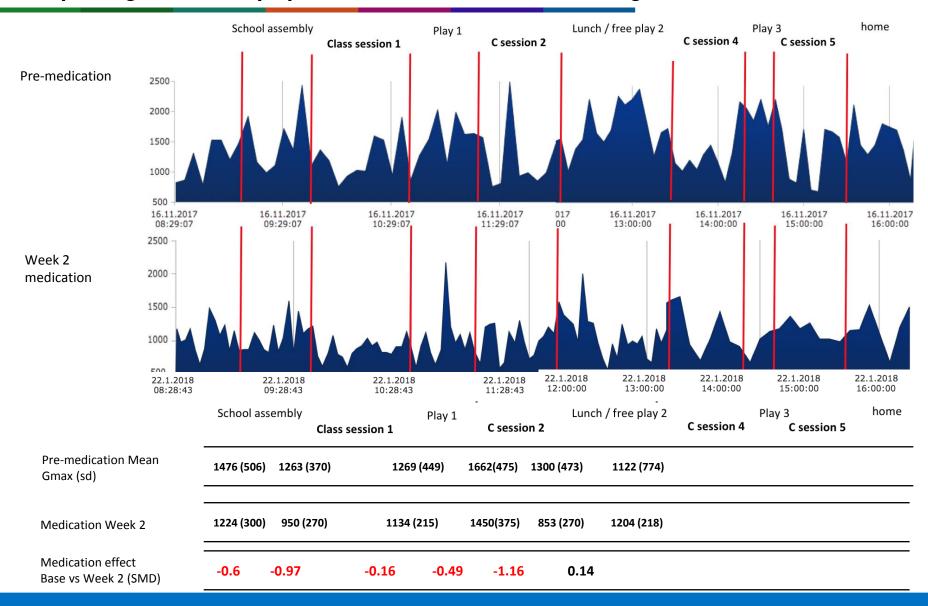
Improving detection, symptom and adverse effect monitoring in ADHD

Fig. 2 Mean 20-minute activity level time profiles for 24 hours (A) and for a 10-hour school day following methylphenidate treatments (B). EXP = experimental; TID = thrice-daily; PLA = placebo.

Swanson, et al. JAACAP(2002) 41: 11

Supporting decisions for assessment, diagnosis and treatment...

National Institute for Health Research


Improving detection, symptom and adverse effect monitoring in ADHD

- Lost cost, durable device
- Set up and maintenance easy to explain & do
- Access to raw data
- Simple but acceptable device "not weird"
- Simple but sufficiently detailed clinical and caregiver interface

Improving detection, symptom and adverse effect monitoring in ADHD

Many thanks to:

BRC Nucleus Team (CRIS): Prof Rob Stewart, Prof Matthew Hotopf, Dr Richard Hayes, Dr Catherine Polling, Matthew Broadbent, Megan Pritchard, Hitesh Shetty, Amelia Jewell.

NLP Team: Dr Sumithra Velupillai, Dr Andre Bittar, Dr Natalia Viani, Dr Angus Roberts and Dr Rina Dutta.

SLaM Centre for Translation Informatics: Prof Richard Dobson, Dr Ian Grant, Lukasz Zalewski, Dr Zina Ibrahim, Stuart McClellan.

Child Psychiatry: Prof Emily Simonoff, Prof Edmund Sonuga-Barke, Dr Sophie Epstein, Anna Morris, Dr Omer Moghraby, Dr Jacqueline-Philips-Owen, Alfonce Munuve.

External: Prof Ruth Gilbert, Prof Tamsin Ford, Lucile Ter-Minassian.

Contact details/for more information

PO BOX 85
King's College London
16 De Crespigny Park
London, SE5 8AF

Johnny.downs@kcl.ac.uk https://kclpure.kcl.ac.uk/portal/johnny.downs.html